

OCR Computer Science A Level

2.3.1 Algorithms for the Main Data Structures
Concise Notes

www.pmt.education

Specification:

● Stacks
● Queues
● Linked lists
● Trees
● Traversal of trees

○ Depth-first (post-order)
○ Breadth-first

www.pmt.education

Algorithms for the Main Data Structures

● Each data structure has its own algorithms associated with it
● These allow data to be manipulated in useful ways
● All data structures mentioned are covered in greater detail in 1.4.2 Data Structures

Stacks

● Example of a ​first in, last out ​(FILO) data structure
● Often ​implemented as an array
● Use a​ single pointer ​which keeps track of the top of the stack (called the top pointer)

○ Points to the element which is​ currently at the top ​of the stack
○ Is initialised at -1, as the first element in the stack is in position 0

● Algorithms for stacks include adding to the stack, removing from the stack and
checking whether the stack is empty/full

● All of the operations have their own ​ special names ​, as shown in the table below

Operation Name

Check size size()

Check if empty isEmpty()

Return top element (but
don’t remove)

peek()

Add to the stack push(element)

Remove top element
from the stack and
return removed element

pop()

size()

● Returns the ​number of elements ​on the stack
● Returns the value of the top pointer plus one

size()

return top + 1

www.pmt.education

isEmpty()
● Returns True if the stack is empty, otherwise returns False
● Works by checking whether the top pointer is​ less than 0

isEmpty()

if top < 0:
return True

else:
return False

endif

peek()

● Returns the item at the top of the stack, ​without removing it
● Returns the item at the position indicated by the top pointer
● Important to check that the stack ​has data in it ​before attempting to return anything

peek()

if isEmpty():
return error

else:
return A[top]

endif

push(element)

● Adds an item to a stack
● The new item must be​ passed as a parameter
● Firstly, the top pointer is updated accordingly
● Then the new element can be inserted at the position of the top pointer

push(element)

top += 1
A[top] = element

pop()

● Removes an item from a stack
● Element at the position of the top pointer is recorded before being removed
● Top pointer ​decremented by one
● The removed item is returned
● As with ​peek()​, it’s important to first check that the stack ​isn’t empty

www.pmt.education

pop()

if isEmpty():
return error

else:
toRemove = A[top]
A[top] = “”
top -= 1
return toRemove

endif

Queues
● A type of​ first in, first out ​(FIFO) data structure
● Just like stacks, queues are often represented as arrays
● Unlike stacks, queues make use of two pointers:

○ Front ​holds the position of the first element
○ Back ​stores the ​next available space

● Operations which can be carried out on queues are similar to those of stacks

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

John Sarah Mel Lucy Stephen

↑ ↑

Front Back

Operation Name

Check size size()

Check if empty isEmpty()

Return top element (but
don’t remove)

peek()

Add to the queue enqueue(element)

Remove element at the
front of the queue and
return removed element

dequeue()

www.pmt.education

size()

● Returns the number of elements in a queue
● Simply​ subtracts the value of front from back

size()

return back - front

isEmpty()

● Returns True if a queue is empty, and False otherwise
● When a queue is empty, front and back ​ point to the same position

isEmpty()

if front == back:
return True

else:
return False

endif

peek()

● Returns the element at the front of the queue ​without removing it

peek()
return A[front]

enqueue(element)

● Adds an element to the back of a queue
● The new element is placed in the position of back
● Back is ​incremented by one

enqueue(element)

A[back] = element
back += 1

www.pmt.education

dequeue()

● Removes the item at the front of the queue
● Items are removed from a queue from the ​position of the front pointer
● Just as with stacks, it’s important to check that the queue​ isn’t empty
● After the element has been removed, the front pointer must be incremented

dequeue()

if isEmpty():
return error

else:
toDequeue = A[front]
A[front] = “”
front += 1
return toDequeue

endif

Linked Lists

● Composed of ​nodes ​, each of which has a pointer to the ​next item ​in the list
● If a node is referred to as N, the next node can be accessed using ​N.next
● The first item in a list is referred to as the ​head ​and the last as the ​tail
● Searching a list is performed using a linear search

○ Carried out by sequential next operations until the desired element is found

Trees

● Formed from ​nodes ​and ​edges
● Cannot contain ​cycles
● Edges are not ​directed
● Useful as a data structure because trees can be ​traversed
● There are two types of traversal to cover: ​depth first ​(post-order) and ​breadth first
● Both can be implemented ​recursively

Depth first (post-order) traversal

● Goes ​as far into the tree as possible ​before backtracking
● Uses a ​stack ​and goes to the ​ left child node ​of the current node when it can
● If there is no left child then the algorithm goes to the​ right child
● If there are no child nodes, the algorithm ​visits ​the current node, outputting the

value of this node
● It then backtracks to the next node on the stack and ​moves right
● See the example in the full notes

www.pmt.education

Breadth first

● Starting from the left, breadth-first visits ​all the children ​of the start node
● The algorithm then visits all nodes ​directly connected ​to each of those nodes in

turn, continuing until every node has been visited
● Unlike depth first traversal (which uses a stack), breadth first uses a ​queue

www.pmt.education

